Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1148945 | Journal of Statistical Planning and Inference | 2011 | 15 Pages |
A Bayesian method for estimating a time-varying regression model subject to the presence of structural breaks is proposed. Heteroskedastic dynamics, via both GARCH and stochastic volatility specifications, and an autoregressive factor, subject to breaks, are added to generalize the standard return prediction model, in order to efficiently estimate and examine the relationship and how it changes over time. A Bayesian computational method is employed to identify the locations of structural breaks, and for estimation and inference, simultaneously accounting for heteroskedasticity and autocorrelation. The proposed methods are illustrated using simulated data. Then, an empirical study of the Taiwan and Hong Kong stock markets, using oil and gas price returns as a state variable, provides strong support for oil prices being an important explanatory variable for stock returns.