Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1148953 | Journal of Statistical Planning and Inference | 2011 | 12 Pages |
Abstract
Linear models with a growing number of parameters have been widely used in modern statistics. One important problem about this kind of model is the variable selection issue. Bayesian approaches, which provide a stochastic search of informative variables, have gained popularity. In this paper, we will study the asymptotic properties related to Bayesian model selection when the model dimension p is growing with the sample size n. We consider pâ¤n and provide sufficient conditions under which: (1) with large probability, the posterior probability of the true model (from which samples are drawn) uniformly dominates the posterior probability of any incorrect models; and (2) the posterior probability of the true model converges to one in probability. Both (1) and (2) guarantee that the true model will be selected under a Bayesian framework. We also demonstrate several situations when (1) holds but (2) fails, which illustrates the difference between these two properties. Finally, we generalize our results to include g-priors, and provide simulation examples to illustrate the main results.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Zuofeng Shang, Murray K. Clayton,