Article ID Journal Published Year Pages File Type
1148963 Journal of Statistical Planning and Inference 2011 10 Pages PDF
Abstract
Systematic sampling is the simplest and easiest of the most common sampling methods. However, when the population size N cannot be evenly divided by the sampling size n, systematic sampling cannot be performed. Not only is it difficult to determine the sampling interval k equivalent to the sampling probability of the sampling unit, but also the sample size will be inconstant and the sample mean will be a biased estimator of the population mean. To solve this problem, this paper introduces an improved method for systematic sampling: the remainder Markov systematic sampling method. This new method involves separately finding the first-order and second-order inclusion probabilities. This approach uses the Horvitz-Thompson estimator as an unbiased estimator of the population mean to find the variance of the estimator. This study examines the effectiveness of the proposed method for different super-populations.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,