Article ID Journal Published Year Pages File Type
1149271 Journal of Statistical Planning and Inference 2011 14 Pages PDF
Abstract
In this paper, we investigate the construction of compromise estimators of location and scale, by averaging over several models selected among a specified large set of possible models. The weight given to each distribution is based on the profile likelihood, which leads to a notion of distance between distributions as we study the asymptotic behaviour of such estimators. The selection of the models is made in a minimax way, in order to choose distributions that are close to any possible distribution. We also present simulation results of such compromise estimators based on contaminated Gaussian and Student's t distributions.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,