Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1149290 | Journal of Statistical Planning and Inference | 2011 | 18 Pages |
In longitudinal observational studies, repeated measures are often correlated with observation times as well as censoring time. This article proposes joint modeling and analysis of longitudinal data with time-dependent covariates in the presence of informative observation and censoring times via a latent variable. Estimating equation approaches are developed for parameter estimation and asymptotic properties of the proposed estimators are established. In addition, a generalization of the semiparametric model with time-varying coefficients for the longitudinal response is considered. Furthermore, a lack-of-fit test is provided for assessing the adequacy of the model, and some tests are presented for investigating whether or not covariate effects vary with time. The finite-sample behavior of the proposed methods is examined in simulation studies, and an application to a bladder cancer study is illustrated.