Article ID Journal Published Year Pages File Type
1149305 Journal of Statistical Planning and Inference 2010 10 Pages PDF
Abstract
In this paper, bias-adjustment in the jackknife estimator of variance accredited to Rao and Sitter (1995) has been considered. Then the bias-adjusted Rao and Sitter (1995) estimator has been calibrated such that its expected value under the imputing superpopulation model remains the same as the expected value of the mean squared error of the ratio estimator in the presence of non-response. A simulation study has been performed to compare the six different estimators of variance: out of them four estimators belong to Rao and Sitter (1995) and the other two proposed estimators are named as bias-adjusted and bias-adjusted-cum-calibrated estimators. The empirical relative bias and empirical relative efficiency of the two proposed estimators with respect to the four existing estimators accredited to Rao and Sitter (1995) have been investigated through simulations. The bias-adjusted-cum-calibrated estimator has been found to be an efficient estimator in the case of heteroscadastic populations. The present paper considers the situation of simple random and without replacement sampling. The possibility of obtaining a negative estimate of variance by the estimator due to Kim et al. (2006) has been pointed out.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,