Article ID Journal Published Year Pages File Type
1149360 Journal of Statistical Planning and Inference 2011 10 Pages PDF
Abstract

In many settings it is useful to have bounds on the total variation distance between some random variable Z and its shifted version Z+1. For example, such quantities are often needed when applying Stein's method for probability approximation. This note considers one way in which such bounds can be derived, in cases where Z is either the equilibrium distribution of some birth–death process or the mixture of such a distribution. Applications of these bounds are given to translated Poisson and compound Poisson approximations for Poisson mixtures and the Pólya distribution.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,