Article ID Journal Published Year Pages File Type
1149441 Journal of Statistical Planning and Inference 2010 12 Pages PDF
Abstract
Good control charts for high quality processes are often based on the number of successes between failures. Geometric charts are simplest in this respect, but slow in recognizing moderately increased failure rates p. Improvement can be achieved by waiting until r>1 failures have occurred, i.e. by using negative binomial charts. In this paper we analyze such charts in some detail. On the basis of a fair comparison, we demonstrate how the optimal r is related to the degree of increase of p. As in practice p will usually be unknown, we also analyze the estimated version of the charts. In particular, simple corrections are derived to control the nonnegligible effects of this estimation step.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,