Article ID Journal Published Year Pages File Type
1149458 Journal of Statistical Planning and Inference 2011 14 Pages PDF
Abstract

A robust estimator is developed for Poisson mixture models with a known number of components. The proposed estimator minimizes the L2 distance between a sample of data and the model. When the component distributions are completely known, the estimators for the mixing proportions are in closed form. When the parameters for the component Poisson distributions are unknown, numerical methods are needed to calculate the estimators. Compared to the minimum Hellinger distance estimator, the minimum L2 estimator can be less robust to extreme outliers, and often more robust to moderate outliers.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,