Article ID Journal Published Year Pages File Type
1149518 Journal of Statistical Planning and Inference 2010 6 Pages PDF
Abstract

We review the concepts of local and global invertibility for a nonlinear auto-regressive moving-average (NLARMA) model. Under very general conditions, a local invertibility analysis of an NLARMA model shows the generic dichotomy that the innovation reconstruction errors either diminish geometrically fast or grow geometrically fast. We derive a simple sufficient condition for an NLARMA model to be locally invertible. The invertibility of the polynomial MA models is revisited. Moreover, we show that the threshold MA models may be globally invertible even though some component MA models are non-invertible. One novelty of our approach is its cross-fertilization with dynamical systems.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,