Article ID Journal Published Year Pages File Type
1149684 Journal of Statistical Planning and Inference 2009 13 Pages PDF
Abstract

Accurate estimates of volatility are needed in risk management. Generalized autoregressive conditional heteroscedastic (GARCH) models and random coefficient autoregressive (RCA) models have been used for volatility modelling. Following Heyde [1997. Quasi-likelihood and its Applications. Springer, New York], volatility estimates are obtained by combining two different estimating functions. It turns out that the combined estimating function for the parameter in autoregressive processes with GARCH errors and RCA models contains maximum information. The combination of the least squares (LS) estimating function and the least absolute deviation (LAD) estimating function with application to GARCH model error identification is discussed as an application.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,