Article ID Journal Published Year Pages File Type
1149794 Journal of Statistical Planning and Inference 2009 16 Pages PDF
Abstract

In this article, we propose some new generalizations of M-estimation procedures for single-index regression models in presence of randomly right-censored responses. We derive consistency and asymptotic normality of our estimates. The results are proved in order to be adapted to a wide range of techniques used in a censored regression framework (e.g. synthetic data or weighted least squares). As in the uncensored case, the estimator of the single-index parameter is seen to have the same asymptotic behavior as in a fully parametric scheme. We compare these new estimators with those based on the average derivative technique of Lu and Burke [2005. Censored multiple regression by the method of average derivatives. J. Multivariate Anal. 95, 182–205] through a simulation study.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,