Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1150108 | Journal of Statistical Planning and Inference | 2011 | 15 Pages |
Abstract
This paper discusses a class of tests of lack-of-fit of a parametric regression model when design is non-random and uniform on [0,1]. These tests are based on certain minimized distances between a nonparametric regression function estimator and the parametric model being fitted. We investigate asymptotic null distributions of the proposed tests, their consistency and asymptotic power against a large class of fixed and sequences of local nonparametric alternatives, respectively. The best fitted parameter estimate is seen to be n1/2-consistent and asymptotically normal. A crucial result needed for proving these results is a central limit lemma for weighted degenerate U statistics where the weights are arrays of some non-random real numbers. This result is of an independent interest and an extension of a result of Hall for non-weighted degenerate U statistics.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Hira L. Koul,