Article ID Journal Published Year Pages File Type
1150144 Journal of Statistical Planning and Inference 2011 16 Pages PDF
Abstract
This paper studies nonparametric regression with long memory (LRD) errors and predictors. First, we formulate general conditions which guarantee the standard rate of convergence for a nonparametric kernel estimator. Second, we calculate the mean integrated squared error (MISE). In particular, we show that LRD of errors may influence MISE. On the other hand, an estimator for a shape function is typically not influenced by LRD in errors. Finally, we investigate properties of a data-driven bandwidth choice. We show that averaged squared error (ASE) is a good approximation of MISE; however, this is not the case for a cross-validation criterion.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,