Article ID Journal Published Year Pages File Type
1150238 Journal of Statistical Planning and Inference 2010 11 Pages PDF
Abstract

The purpose of this paper is to develop a Bayesian approach for log-Birnbaum–Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum–Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback–Leibler divergence. The developed procedures are illustrated with a real data set.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,