Article ID Journal Published Year Pages File Type
1150249 Journal of Statistical Planning and Inference 2010 11 Pages PDF
Abstract

This paper addresses the problem of estimating a matrix of the normal means, where the variances are unknown but common. The approach to this problem is provided by a hierarchical Bayes modeling for which the first stage prior for the means is matrix-variate normal distribution with mean zero matrix and a covariance structure and the second stage prior for the covariance is similar to Jeffreys’ rule. The resulting hierarchical Bayes estimators relative to the quadratic loss function belong to a class of matricial shrinkage estimators. Certain conditions are obtained for admissibility and minimaxity of the hierarchical Bayes estimators.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,