Article ID Journal Published Year Pages File Type
1150263 Journal of Statistical Planning and Inference 2010 12 Pages PDF
Abstract

Distribution function estimation plays a significant role of foundation in statistics since the population distribution is always involved in statistical inference and is usually unknown. In this paper, we consider the estimation of the distribution function of a response variable Y with missing responses in the regression problems. It is proved that the augmented inverse probability weighted estimator converges weakly to a zero mean Gaussian process. A augmented inverse probability weighted empirical log-likelihood function is also defined. It is shown that the empirical log-likelihood converges weakly to the square of a Gaussian process with mean zero and variance one. We apply these results to the construction of Gaussian process approximation based confidence bands and empirical likelihood based confidence bands of the distribution function of Y. A simulation is conducted to evaluate the confidence bands.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,