Article ID Journal Published Year Pages File Type
1150342 Journal of Statistical Planning and Inference 2010 16 Pages PDF
Abstract

To estimate and measure risks, two key classes of dependence relationship must be identified: temporal dependence and contemporaneous dependence. In this paper, we propose a parametric estimation model that uses a three-stage pseudo maximum likelihood estimation (3SPMLE), and we investigate the consistency and asymptotic normality of parametric estimators. The proposed model combines the concept of a copula and the methods of parametric estimators of two-stage pseudo maximum likelihood estimation (2SPMLE). The selection of a copula model that best captures the dependence structure is a critical problem. To solve this problem, we propose a model selection method that is based on the parametric pseudo-likelihood ratio under the 3SPMLE for stationary Markov vector-type models.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,