Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1150436 | Journal of Statistical Planning and Inference | 2009 | 7 Pages |
In this article, we explore hypothesis testing problems related to correlated proportions from clustered matched-pair binary data. Null hypotheses of equality in proportions, homogeneity, and non-inferiority of one to another are similar testing problems of linear contrasts of correlated proportions with suitable transformation. The covariance estimators of the test statistics are based on moment estimation under the null hypotheses. We present a general framework for testing linear contrasts of the correlated proportions from clustered matched-pair data based upon a class of unbiased estimators of the proportions. The corresponding testing procedures do not impose structure assumptions on the correlation matrix and are easy to use. Simulation results suggest that the proposed method is more likely to maintain the proper significance level and to improve power than the test proposed by Obuchowski.