Article ID Journal Published Year Pages File Type
1150511 Journal of Statistical Planning and Inference 2008 14 Pages PDF
Abstract

Linear mixed models based on the normality assumption are widely used in health related studies. Although the normality assumption leads to simple, mathematically tractable, and powerful tests, violation of the assumption may easily invalidate the statistical inference. Transformation of variables is sometimes used to make normality approximately true. In this paper we consider another approach by replacing the normal distributions in linear mixed models by skew-t distributions, which account for skewness and heavy tails for both the random effects and the errors. The full likelihood-based estimator is often difficult to use, but a 3-step estimation procedure is proposed, followed by an application to the analysis of deglutition apnea duration in normal swallows. The example shows that skew-t models often entail more reliable inference than Gaussian models for the skewed data.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,