Article ID Journal Published Year Pages File Type
1150520 Journal of Statistical Planning and Inference 2008 19 Pages PDF
Abstract

A leading multivariate extension of the univariate quantiles is the so-called “spatial” or “geometric” notion, for which sample versions are highly robust and conveniently satisfy a Bahadur–Kiefer representation. Another extension of univariate quantiles has been to univariate U-quantiles, on the basis of which, for example, the well-known Hodges–Lehmann location estimator has a natural formulation. Generalizing both extensions, we introduce multivariate spatial U-quantiles and develop a corresponding Bahadur–Kiefer representation. New statistics based on spatial U-quantiles are presented for nonparametric estimation of multiple regression coefficients, extending the classical Theil–Sen nonparametric simple linear regression slope estimator, and for robust estimation of multivariate dispersion. Some other applications are mentioned as well.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,