Article ID Journal Published Year Pages File Type
1150556 Journal of Statistical Planning and Inference 2008 13 Pages PDF
Abstract

In this paper, we consider the problem of estimating an extreme quantile of a Weibull tail-distribution. The new extreme quantile estimator has a reduced bias compared to the more classical ones proposed in the literature. It is based on an exponential regression model that was introduced in Diebolt et al. [2007. Bias-reduced estimators of the Weibull-tail coefficient. Test, to appear]. The asymptotic normality of the extreme quantile estimator is established. We also introduce an adaptive selection procedure to determine the number of upper order statistics to be used. A simulation study as well as an application to a real data set is provided in order to prove the efficiency of the above-mentioned methods.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,