Article ID Journal Published Year Pages File Type
1150631 Journal of Statistical Planning and Inference 2007 14 Pages PDF
Abstract

We investigate optimal designs for discriminating between exponential regression models of different complexity, which are widely used in the biological sciences; see, e.g., Landaw [1995. Robust sampling designs for compartmental models under large prior eigenvalue uncertainties. Math. Comput. Biomed. Appl. 181–187] or Gibaldi and Perrier [1982. Pharmacokinetics. Marcel Dekker, New York]. We discuss different approaches for the construction of appropriate optimality criteria, and find sharper upper bounds on the number of support points of locally optimal discrimination designs than those given by Caratheodory's Theorem. These results greatly facilitate the numerical construction of optimal designs. Various examples of optimal designs are then presented and compared to different other designs. Moreover, to protect the experiment against misspecifications of the nonlinear model parameters, we adapt the design criteria such that the resulting designs are robust with respect to such misspecifications and, again, provide several examples, which demonstrate the advantages of our approach.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,