| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 1150699 | Journal of Statistical Planning and Inference | 2006 | 22 Pages |
We consider the estimation of error variance and construct a class of estimators improving upon the usual estimators uniformly under entropy loss or under squared error loss. Through a Monte Carlo simulation study, the magnitude of the risk reduction of our improved estimator as compared with the usual one is examined in a context of a nested linear hypothesis testing of a linear regression model, where substantial risk reduction can be attained. We also construct a class of confidence intervals having larger coverage probabilities and not larger interval lengths than those of the usual ones. This allows us to construct a class of estimators universally dominating the usual ones. Further, we consider the estimation of order-restricted normal variances. We give a class of isotonic regression estimators improving upon the usual ones under various types of order restrictions. We also give a class of improved confidence intervals over the usual ones, and a class of estimators universally dominating the usual ones.
