Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1150711 | Journal of Statistical Planning and Inference | 2006 | 22 Pages |
We consider a parameter estimation problem with independent observations where one samples from a finite population of independent and identically distributed experimental conditions X. The size of the population is N but only n samples, a proportion αα of N , can be used. The quality of a sample is measured by a regular optimality criterion φ(·)φ(·) based on the information matrix, such as the D -criterion. The construction of an optimal approximate design bounded by μ/αμ/α, with μμ the probability measure of X, can be used to construct a sampling strategy which is asymptotically optimum (when the size N of the population tends to infinity). We show that a sequential strategy which does not require any information on μμ is also asymptotically optimum. Some possible applications are indicated.