Article ID Journal Published Year Pages File Type
1152628 Statistics & Probability Letters 2014 7 Pages PDF
Abstract

Poisson change-point models have been widely used for modelling inhomogeneous time-series of count data. There are a number of methods available for estimating the parameters in these models using iterative techniques such as MCMC. Many of these techniques share the common problem that there does not seem to be a definitive way of knowing the number of iterations required to obtain sufficient convergence. In this paper, we show that the Gibbs sampler of the Poisson change-point model is geometrically ergodic. Establishing geometric ergodicity is crucial from a practical point of view as it implies the existence of a Markov chain central limit theorem, which can be used to obtain standard error estimates. We prove that the transition kernel is a trace-class operator, which implies geometric ergodicity of the sampler. We then provide a useful application of the sampler to a model for the quarterly driver fatality counts for the state of Victoria, Australia.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
,