Article ID Journal Published Year Pages File Type
1156580 Stochastic Processes and their Applications 2006 25 Pages PDF
Abstract
Consider events of the form {Zs≥ζ(s),s∈S}, where Z is a continuous Gaussian process with stationary increments, ζ is a function that belongs to the reproducing kernel Hilbert space R of process Z, and S⊂R is compact. The main problem considered in this paper is identifying the function β∗∈R satisfying β∗(s)≥ζ(s) on S and having minimal R-norm. The smoothness (mean square differentiability) of Z turns out to have a crucial impact on the structure of the solution. As examples, we obtain the explicit solutions when ζ(s)=s for s∈[0,1] and Z is either a fractional Brownian motion or an integrated Ornstein-Uhlenbeck process.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , , ,