Article ID Journal Published Year Pages File Type
1161208 Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 2015 9 Pages PDF
Abstract

•The tails problem for GRW is ambiguous in the literature.•The most severe version of the tails problem for GRW is formulated.•Extant solutions to the (most severe) tails problem fail to solve it.•GRW must replace Gaussian collapse functions with compact support collapse functions.•Compact support collapse functions introduce new tension with relativity theory.

The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
,