Article ID Journal Published Year Pages File Type
1162820 Analytica Chimica Acta 2016 10 Pages PDF
Abstract

•Development of innovative platform for direct and ultra-sensitive toxins detection.•Aptasensor based on modified conductive polypyrrole layer.•We demonstrate the conformation change of aptamer upon toxin binding.•We highlight that detection was obtained by modification of charge of polypyrrole.•Detection of OTA in wine was demonstrated.

Ochratoxin A (OTA) is a carcinogenic mycotoxin that contaminates food such as cereals, wine and beer; therefore it represents a risk for human health. Consequently, the allowed concentration of OTA in food is regulated by governmental organizations and its detection is of major agronomical interest. In the current study we report the development of an electrochemical aptasensor able to directly detect trace OTA without any amplification procedure. This aptasensor was constructed by coating the surface of a gold electrode with a film layer of modified polypyrrole (PPy), which was thereafter covalently bound to polyamidoamine dendrimers of the fourth generation (PAMAM G4). Finally, DNA aptamers that specifically binds OTA were covalently bound to the PAMAM G4 providing the aptasensor, which was characterized by using both Atomic Force Microscopy (AFM) and Surface Plasmon Resonance (SPR) techniques. The study of OTA detection by the constructed electrochemical aptasensor was performed using Electrochemical Impedance Spectroscopy (EIS) and revealed that the presence of OTA led to the modification of the electrical properties of the PPy layer. These modifications could be assigned to conformational changes in the folding of the aptamers upon specific binding of OTA. The aptasensor had a dynamic range of up to 5 μg L−1 of OTA and a detection limit of 2 ng L−1 of OTA, which is below the OTA concentration allowed in food by the European regulations. The efficient detection of OTA by this electrochemical aptasensor provides an unforeseen platform that could be used for the detection of various small molecules through specific aptamer association.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,