Article ID Journal Published Year Pages File Type
1162998 Analytica Chimica Acta 2016 7 Pages PDF
Abstract

•Mn2+:ZnS@SiO2/MoS2-RBS nanocomposites were developed as a novel ratiometric two-photon excited fluorescence probe.•This probe could conduct real-time detection of nitric oxide release in situ.•High feasibility of this probe was confirmed in tumor intracellular microenvironments.

Probe-donor integrated nanocomposites were developed from conjugating silica-coated Mn2+:ZnS quantum dots (QDs) with MoS2 QDs and photosensitive nitric oxide (NO) donors (Fe4S3(NO)7−, RBS). Under excitation with near-infrared (NIR) light at 808 nm, the Mn2+:ZnS@SiO2/MoS2-RBS nanocomposites showed the dual-emissive two-photon excited photoluminescence (TPEPL) that induced RBS photolysis to release NO in situ. NO caused TPEPL quenching of Mn2+:ZnS QDs, but it produced almost no impact on the TPEPL of MoS2 QDs. Hence, the nanocomposites were developed as a novel QDs-based ratiometric TPEPL probe for real-time detection of NO release in situ. The ratiometric TPEPL intensity is nearly linear (R2 = 0.9901) with NO concentration in the range of 0.01∼0.8 μM, which corresponds to the range of NO release time (0∼15 min). The detection limit was calculated to be approximately 4 nM of NO. Experimental results confirmed that this novel ratiometric TPEPL probe possessed high selectivity and sensitivity for the detection of NO against potential competitors, and especially showed high detection performance for NIR-light triggered NO release in tumor intracellular microenvironments. These results would promote the development of versatile probe-donor integrated systems, also providing a facile and efficient strategy to real-time detect the highly controllable drug release in situ, especially in physiological microenvironments.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,