Article ID Journal Published Year Pages File Type
1163015 Analytica Chimica Acta 2016 10 Pages PDF
Abstract

•A novel electrochemiluminescence DNA sensor has been developed for the determination of target DNAHBV and target DNAHCV.•The DNA sensor shows good sensitivity, reproducibility and stability.•The ECL provided a convenient, low-cost, sensitive, and specific method for target DNAHBV and target DNAHCV determination.•Target DNAHBV and target DNAHCV in human serum samples were detected with good accuracy and precision.

In this work, a novel multiplex electrochemiluminescence (ECL) DNA sensor has been developed for determination of hepatitis B virus (HBV) and hepatitis C virus (HCV) based on multicolor CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs). The electrochemically synthesized graphene nanosheets (GNs) were selected as conducting bridge to anchor CdTe QDs551-capture DNAHBV and CdTe QDs607-capture DNAHCV on the glassy carbon electrode (GCE). Then, different concentrations of target DNAHBV and target DNAHCV were introduced to hybrid with complementary CdTe QDs-capture DNA. Au NPs-probe DNAHBV and Au NPs-probe DNAHCV were modified to the above composite film via hybrid with the unreacted complementary CdTe QDs-capture DNA. Au NPs could quench the electrochemiluminescence (ECL) intensity of CdTe QDs due to the inner filter effect. Therefore, the determination of target DNAHBV and target DNAHCV could be achieved by monitoring the ECL DNA sensor based on Au NPs-probe DNA/target DNA/CdTe QDs-capture DNA/GNs/GCE composite film. Under the optimum conditions, the ECL intensity of CdTe QDs551 and CdTe QDs607 and the concentration of target DNAHBV and target DNAHCV have good linear relationship in the range of 0.0005–0.5 nmol L−1 and 0.001–1.0 nmol L−1 respectively, and the limit of detection were 0.082 pmol L−1 and 0.34 pmol L−1 respectively (S/N = 3). The DNA sensor showed good sensitivity, selectivity, reproducibility and acceptable stability. The proposed DNA sensor has been employed for the determination of target DNAHBV and target DNAHCV in human serum samples with satisfactory results.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , ,