Article ID Journal Published Year Pages File Type
1163165 Analytica Chimica Acta 2016 7 Pages PDF
Abstract

•Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction.•New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels.•Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L−1 levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min−1, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L−1 for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,