Article ID Journal Published Year Pages File Type
1163349 Analytica Chimica Acta 2015 9 Pages PDF
Abstract

•Detection limits for Zn, Pb, and Cd using ASV were 1, 0.1, and 0.1 μg L−1, respectively.•G/PANI-modification led to a 3× improvement in signal vs. unmodified electrodes.•ASV on a plastic substrate exhibited better sensitivity than on a paper substrate.•Zn, Pb, and Cd were measured in human serum using method of standard addition.

This work describes the development of an electrochemical sensor for simultaneous detection of Zn(II), Cd(II), and Pb(II) using a graphene–polyaniline (G/PANI) nanocomposite electrode prepared by reverse-phase polymerization in the presence of polyvinylpyrrolidone (PVP). Two substrate materials (plastic film and filter paper) and two nanocomposite deposition methods (drop-casting and electrospraying) were investigated. Square-wave anodic stripping voltammetry currents were higher for plastic vs. paper substrates. Performance of the G/PANI nanocomposites was characterized by scanning electron microscopy (SEM) and cyclic voltammetry. The G/PANI-modified electrode exhibited high electrochemical conductivity, producing a three-fold increase in anodic peak current (vs. the unmodified electrode). The G/PANI-modified electrode also showed evidence of increased surface area under SEM. Square-wave anodic stripping voltammetry was used to measure Zn(II), Cd(II), and Pb(II) in the presence of Bi(III). A linear working range of 1–300 μg L−1 was established between anodic current and metal ion concentration with detection limits (S/N = 3) of 1.0 μg L−1 for Zn(II), and 0.1 μg L−1 for both Cd(II) and Pb(II). The G/PANI-modified electrode allowed selective determination of the target metals in the presence of common metal interferences including Mn(II), Cu(II), Fe(III), Fe(II), Co(III), and Ni(II). Repeat assays on the same device demonstrated good reproducibility (%RSD < 11) over 10 serial runs. Finally, this system was utilized for determining Zn(II), Cd(II), and Pb(II) in human serum using the standard addition method.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,