Article ID Journal Published Year Pages File Type
1164410 Analytica Chimica Acta 2014 8 Pages PDF
Abstract

•A core–shell heterostructure MWCNTs@GONRs was produced from unzipping MWCNTs.•A new electrochemical sensor for PAAs was developed based on MWCNTs@GONRs hybrids.•The sensor shows good analytical performance for PAAs detection.

Being awfully harmful to the environment and human health, the qualitative and quantitative determinations of polycyclic aromatic amines (PAAs) are of great significance. In this paper, a novel core–shell heterostructure of multiwalled carbon nanotubes (MWCNTs) as the core and graphene oxide nanoribbons (GONRs) as the shell (MWCNTs@GONRs) was produced from longitudinal partially unzipping of MWCNTs side walls using a simple wet chemical strategy and applied for electrochemical determination of three kinds of PAAs (1-aminopyrene (1-AP), 1-aminonaphthalene and 3,3′-diaminobiphenyl). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and electrochemical methods were used to characterize the as-prepared MWCNTs@GONRs. Due to the synergistic effects from MWCNTs and GONRs, the oxidation currents of PAAs at the MWCNTs@GONRs modified glassy carbon (GC) electrode are much higher than that at the MWCNTs/GC, graphene/GC and bare GC electrodes. 1-AP was used as the representative analyte to demonstrate the sensing performance of the MWCNTs@GONRs/GC electrode, and the proposed modified electrode has a linear response range of 8.0–500.0 nM with a detection limit of 1.5 nM towards 1-AP.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,