Article ID Journal Published Year Pages File Type
1165269 Analytica Chimica Acta 2013 11 Pages PDF
Abstract

•We investigated an efficient microextraction technique for the analysis of Ag and TiO2 NPs in water.•NPs were surface-modified, and then quantitatively extracted and enriched into a solvent.•The most favorable reagents were optimized under environmentally relevant conditions.•Limits of detection of 0.02 and 0.07 μg L−1 were achieved for Ag and TiO2 NPs, respectively.•Natural water samples were successfully analyzed and characterized.

Hydrophobic silver and titanium (IV) oxide nanoparticles (commercial Ag and TiO2 NPs with average particle sizes of 17 and 19 nm, respectively) were quantitatively transferred into organic phase in natural water samples. Five NP surface modification and solvent extraction agents (reagents) types, mercaptocarboxylic acid, alkylamine, mediator solvent, extraction solvent, and surfactant, were investigated and optimized with three-level orthogonal array design (OAD), an OA27 (313) matrix. The most favorable reagents and experimental conditions were then examined. The best extraction efficiencies of 78.6 and 73.7% were obtained for 1 mg L−1 citrate-stabilized Ag and TiO2 NPs, respectively, with 0.5 mM of 11-mercaptoundecanoic acid, 1.5 mM of octadecylamine, 1 mL of methanol, 150 μL of cyclohexane, 0.05 mM of tetra-n-octylammonium bromide, pH = 8.0, adsorption time of 2 h, sonication time of 3 min, and centrifugation time of 10 min. Enrichment factors were 97 and 83, for Ag and TiO2 NPs, respectively. The optimum extraction conditions were successfully applied to genuine water samples at spiking levels of 2–100 μg L−1 of Ag and TiO2 NPs. The relative recoveries of (69.0–85.1)% and (61.5–78.5)% were obtained for Ag and TiO2 NPs, respectively. The extracted surface-modified NPs were characterized with transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray, ultraviolet–visible, and Fourier transform infrared spectroscopic techniques. Based on the results, efficient ligand exchange and acid–base pair formation were observed on the NP surface without significant change in its original properties. The organic phase was microwave digested, and analyzed with inductively coupled plasma (ICP) optical emission spectroscopy and ICP mass spectrometry (ICP-MS). Detection limits of ICP-MS analyses of Ag and TiO2 NPs were 0.02 and 0.07 μg L−1, respectively.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,