Article ID Journal Published Year Pages File Type
1165285 Analytica Chimica Acta 2012 5 Pages PDF
Abstract

Urinary creatinine (CRE) is an important biomarker of renal function. Fast and accurate quantification of CRE in human urine is required by clinical research. By using isotope dilution extractive electrospray ionization tandem mass spectrometry (EESI–MS/MS) a high throughput method for direct and accurate quantification of urinary CRE was developed in this study. Under optimized conditions, the method detection limit was lower than 50 μg L−1. Over the concentration range investigated (0.05–10 mg L−1), the calibration curve was obtained with satisfactory linearity (R2 = 0.9861), and the relative standard deviation (RSD) values for CRE and isotope-labeled CRE (CRE-d3) were 7.1–11.8% (n = 6) and 4.1–11.3% (n = 6), respectively. The isotope dilution EESI–MS/MS method was validated by analyzing six human urine samples, and the results were comparable with the conventional spectrophotometric method (based on the Jaffe reaction). Recoveries for individual urine samples were 85–111% and less than 0.3 min was taken for each measurement, indicating that the present isotope dilution EESI–MS/MS method is a promising strategy for the fast and accurate quantification of urinary CRE in clinical laboratories.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► High throughput analysis of urinary creatinine is achieved by using ID-EESI–MS/MS. ► Urine sample is directly analyzed and no sample pre-treatment is required. ► Accurate quantification is accomplished with isotope dilution technique.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,