Article ID Journal Published Year Pages File Type
1165335 Analytica Chimica Acta 2013 6 Pages PDF
Abstract

A novel visible light sensitized photoelectrochemical sensing platform was constructed based on the perylene-3,4,9,10-tetracarboxylic acid/titanium dioxide (PTCA/TiO2) heterojunction as the photoelectric beacon. PTCA was synthesized via facile steps of hydrolysis and neutralization reaction, and then the PTCA/TiO2 heterojunction was easily prepared by coating PTCA on nano-TiO2 surface. The resulting photoelectric beacon was characterized by transmission electron microscope, scanning electron microscopy, X-ray diffractometry, FTIR spectroscopy, and ultraviolet and visible spectrophotometer. Using parathion-methyl as a model, after a simple hydrolyzation process, p-nitrophenol as the hydrolysate of parathion-methyl could be obtained, the fabricated derivative photoelectrochemical sensor showed good performances with a rapid response, instrument simple and portable, low detection limit (0.08 nmol L−1) at a signal-to-noise ratio of 3, and good selectivity against other pesticides and possible interferences. It had been successfully applied to the detection of parathion-methyl in green vegetables and the results agreed well with that by GC–MS. This strategy not only extends the application of PTCA, but also presents a simple, economic and novel methodology for photoelectrochemical sensing.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► A novel enzymeless photoelectrochemical sensor for 4-nitrophenolate contained OPs. ► Sensors have performances of rapid response, good sensitivity and selectivity. ► PTCA as sensitizer can form ultrastable thin film and is economic as well. ► The strategy extends the application of PTCA for photoelectrochemical sensor.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,