Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1165444 | Analytica Chimica Acta | 2013 | 10 Pages |
The ISO 25101 (International Organization for Standardization, Geneva) describes a new international standard method for the determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) in unfiltered samples of drinking and surface waters. The method is based on the extraction of target analytes by solid phase extraction, solvent elution, and determination by high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). For the determination of the performance of this method, more than 20 laboratories from 9 different countries participated in an inter-laboratory trial in 2006. In addition, inter-laboratory trials were conducted in 2008 and 2009 for the analysis of perfluoroalkylsubstances (PFASs), including PFOS and PFOA, in water samples by following the protocols of Japanese Industrial Standard (JIS). Overall, the repeatability coefficients of variation (i.e., within-laboratory precision) for PFOS and PFOA in all water samples were between 3 and 11%, showing a adequate precision of the ISO and JIS methods. The reproducibility coefficients of variation (i.e., between-laboratory precision) were found to vary within a range of 7–31% for surface water and 20–40% for wastewater. The recoveries of PFOS and PFOA, as a measure of accuracy, varied from 84 to 100% for surface water and from 84 to 100% for wastewater among the samples with acceptable criteria for internal standards recovery. The determined concentrations of PFASs in samples compared well with the “true” values. The results of the inter-laboratory trial confirmed that the analytical methods are robust and reliable and can be used as a standard method for the analysis of target compounds in water samples.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Three inter-laboratory trials were conducted to validate perfluorochemical analysis in water samples. ► Provision of SOPs and standards improved the precision and accuracy of analysis. ► The repeatability and reproducibility coefficients of variation were below 35%. ► Accuracy was improved with the use of appropriate labeled internal standards.