Article ID Journal Published Year Pages File Type
1165787 Analytica Chimica Acta 2013 7 Pages PDF
Abstract

•A single-step extraction and cleanup process is proposed for bisphenol A in soft drinks.•Hemimicelles of tetradecanoate adsorbed onto magnetic nanoparticles are used as a sorbent.•Magnetic SPE/LC–MS/MS provides a reliable method for evaluation of human BPA intake from drinks.

Hemimicelles of tetradecanoate chemisorbed onto magnetic nanoparticles (MNPs) are here proposed as a sorbent for the single-step extraction and cleanup of bisphenol A (BPA) in soft drinks. The purpose of this work was to develop a simple, rapid and low-cost sample treatment suitable to assess the human exposure to BPA from this type of high consumption food. The nanoparticles were easily coated by mixing commercially available magnetite of 20–30 nm mean particle diameter with tetradecanoate at 85 °C for 30 min. The extraction/cleanup procedure involved stirring the samples (3 mL) with 200 mg of tetradecanoate-coated MNPs for 20 min, isolating the sorbent with a Nd–Fe–B magnet and eluting BPA with methanol. The extraction efficiency was not influenced by salt concentrations up to 1 M and pH values over the range 4–9. No cleanup of the extracts was needed, and the method proved matrix-independent. The extracts were analyzed by liquid chromatography, electrospray ionization tandem mass spectrometry. Quantitation was performed by internal standard calibration using BPA-13C12. The limit of quantitation obtained for the method, 0.03 ng mL−1, was below the usual range of concentrations reported for BPA in soft drinks (0.1–3.4 ng mL−1). The proposed method was successfully applied to the determination of BPA in different samples acquired from various supermarkets in southern Spain; the concentrations found ranged from 0.066 to 1.08 ng mL−1. Recoveries from samples spiked with 0.33 ng mL−1 of BPA ranged from 91% to 105% with relative standard deviations from 3% to 8%.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,