Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1166254 | Analytica Chimica Acta | 2012 | 6 Pages |
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► The nanocrystalline pyrolytic carbon film electrode as an electrochemical biosensor. ► The sensor for simultaneous detection of ascorbic acid, dopamine, and uric acid. ► Electrochemical pretreatment enhances the sensitivity and resolution.