Article ID Journal Published Year Pages File Type
1167476 Analytica Chimica Acta 2010 7 Pages PDF
Abstract

A key challenge for the generation of protein microarrays is the immobilization of functional capture probe proteins at the chip surfaces. Here, a new concept for a single step production of protein microarrays to unmodified plastic substrates is presented. It is based on the printing of polymer/protein mixtures and the photochemical attachment of the obtained microstructures to the plastic chip surfaces. In the photochemical process three reactions occur simultaneously: transformation of the polymer into hydrogel dots, covalent binding of the forming gel to the substrate, and covalent immobilization of the proteins to the three-dimensional hydrogel scaffold. As an example we use anti-bovine serum albumin as a protein (anti-BSA) and a water swellable polymer network based on polydimethylacrylamide as a scaffold, which is photochemically crosslinked using benzophenone as a crosslinking agent. In one series of microarray experiments the probe density of the immobilized proteins was determined by incorporating fluorescence-labeled anti-BSA in the hydrogels. In a typical experiment, the number of immobilized probes was determined to 4 × 109 protein molecules per spot. In other experiments, the microarrays were brought into contact with fluorescently labeled BSA. In such analyses signal-to-noise values of more than 200 were obtained and about 9 × 107 antigen molecules were bound per spot. This demonstrates that in a very simple way microarrays with large amount of probes per spot can be realized and that antibodies immobilized in the printed hydrogels remain accessible and retain their functionality.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,