Article ID Journal Published Year Pages File Type
1168481 Analytica Chimica Acta 2009 7 Pages PDF
Abstract

The effect of different substrates including stainless steel, activated carbon, single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), fullerenes (C60, C70, etc.) and SWCNTs doped with iron and palladium nanoparticles were compared for catalytic chemiluminescence reaction of sulfur compounds in a flame-containing cavity of molecular emission cavity analysis (MECA) system. Different forms of CNT substrates were fabricated using electric arc-discharge method. The blue emission of excited S2 was monitored using a CCD camera. The results demonstrate that, due to the high surface area, plenty of basal planes, high thermal conductivity, and high flexibility of the carbon nanostructure as appropriate support, carbon nanostructures play an important role in catalytic chemiluminescence emission of sulfur compounds in MECA. Moreover, the presence of metallic nanoparticles doped on carbon nanostructures enhances their catalytic effect. The results revealed that under similar conditions, SWCNTs/Pd doped nanoparticles, SWCNTs/Fe doped nanoparticles, SWCNTs, MWCNTs and fullerenes have the most catalytic effects on chemiluminescence of sulfur compounds, respectively.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,