Article ID Journal Published Year Pages File Type
1169274 Analytica Chimica Acta 2008 7 Pages PDF
Abstract

A comparison of direct immersion solid-phase microextraction (DI-SPME) and stir bar sorptive extraction (SBSE) coupled to liquid chromatography (HPLC) with fluorimetric detection for the rapid analysis of resveratrol isomers is described. For DI-SPME, a polar Carbowax-template resin (CW/TPR) 50 μm fiber was the most efficient and optimum extraction conditions were 40 °C and an extraction time of 30 min, stirring in the presence of 5% (m/v) sodium chloride and 0.07 M acetate/acetic acid buffer (pH 6). Desorption was carried out using the static mode for 10 min. Linearity was obtained in the 5–150 and 2–150 ng mL−1 ranges for trans- and cis-resveratrol, with detection limits of 2 and 0.5 ng mL−1, respectively. When using SBSE, a polydimethylsiloxane (PDMS) twister provided best extraction by means of a derivatization reaction in the presence of acetic anhydride and potassium carbonate. The same time and temperature were used for the extraction step in the presence of 2.5% (m/v) sodium chloride, and liquid desorption was performed with 150 μL of a 50/50 (v/v) acetonitrile/1% (v/v) acetic acid solution in a desorption time of 15 min. Linearity was now between 0.5 and 50 ng mL−1 for trans-resveratrol with a detection limit of 0.1 ng mL−1, while cis-resveratrol could not be extracted. The proposed methods were successfully applied to determining the resveratrol isomer content of wine, must and fruit juices.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,