Article ID Journal Published Year Pages File Type
1169526 Analytica Chimica Acta 2008 5 Pages PDF
Abstract
This study establishes the applicability of using high-performance liquid chromatography (HPLC) with fluorescence detection for the simultaneous determination of malondialdehyde (MDA) and ofloxacin (OFL). The MDA and OFL were separated through a reverse-phase C18 column (250 mm × 4.6 mm) at a flow rate of 1.0 mL min−1 and then detected using a fluorescence detector (excitation: 532 nm; emission: 553 nm). The separation conditions were optimized by varying the concentration and pH of the phosphate buffer and the percentage of organic solvent; the optimal mobile phase was a mixture of 50 mM phosphate buffer (adjusted to pH 5.8 with potassium hydroxide) and methanol (45:55, v/v). The retention times of MDA and OFL were 3.6 and 5.9 min, respectively, with detection limits (at a signal-to-noise ratio of 3) of 0.015 and 4.0 μM, respectively. This method afforded linear responses between the MDA and OFL concentrations and the HPLC peak areas within the ranges 0.15-2.43 μM and 0.06-1.0 mM, respectively. The precisions of the determinations of MDA and OFL, measured in terms of relative standard deviations, were 1.6-5.0% and 1.9-3.6%, respectively, for intra-day assays and 1.0-4.3% and 0.3-1.8%, respectively, for inter-day assays. The average recoveries of MDA and OFL spiked in plasma were 100.4% and 98.8%, respectively. To the best of our knowledge, this paper describes the first practical analytical approach toward simultaneously monitoring the levels of MDA and OFL in plasma. The OFL-induced oxidative stress measured using this method indicated that OFL treatment did not markedly increase the level of MDA.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,