Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1170389 | Analytica Chimica Acta | 2007 | 7 Pages |
Quartz crystal microbalance (QCM) biosensors for recombinant human interferon-β (rhIFN-β) were constructed by utilizing antisense peptides adhering to the QCM gold surfaces. Two antisense peptides, both corresponding to the N-terminal fragment 1–14 of rhIFN-β, were used in this study. Antisense peptide AS-1 was the original antisense peptide and AS-2 was the modified antisense peptide based on the antisense peptide degeneracy. Both antisense peptides were immobilized on the gold electrodes of piezoelectric crystals, respectively, via a self-assembling monolayer of 1,2-ethanedithiol. The binding affinity between rhIFN-β and each immobilized antisense peptide in solution was evaluated using a quartz crystal microbalance-flow injection analysis (QCM-FIA) system. The dissociation constant of rhIFN-β on the antisense peptide AS-1 and AS-2 biosensor was (1.89 ± 0.101) × 10−4 and (1.22 ± 0.0479) ×10−5 mol L−1, respectively. The results suggested that AS-2 had a higher binding affinity to rhIFN-β than AS-1. The detection for rhIFN-β using each biosensor was precise and reproducible. The linear response ranges of rhIFN-β binding to both biosensors were same with a concentration range of 0.12–0.96 mg mL−1. The results demonstrated the successful construction of highly selective QCM biosensors using antisense peptide approach, and also confirmed the feasibility of increasing antisense peptide binding affinity by appropriate sequence modification.