Article ID Journal Published Year Pages File Type
1171052 Analytica Chimica Acta 2007 8 Pages PDF
Abstract

In this work, we have developed a convenient and efficient method for the functionalization of ordered mesoporous carbon (OMC) using polyoxometalate H6P2Mo18O62·xH2O (P2Mo18). By the method, glassy carbon (GC) electrode modified with P2Mo18 which was immobilized on the channel surface of OMC was prepared and characterized for the first time. The large specific surface area and porous structure of the modified OMC particles result in high heteropolyacid loading, and the P2Mo18 entrapped in this order matrix is stable. Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption–desorption isotherm and X-ray diffraction (XRD) were employed to give insight into the intermolecular interaction between OMC and P2Mo18. The electrochemical behavior of the modified electrode was studied in detail, including pH-dependence, stability and so on. The cyclic voltammetry (CV) and amperometry studies demonstrated that P2Mo18/OMC/GC electrode has high stability, fast response and good electrocatalytic activity for the reduction of nitrite, bromate, idonate, and hydrogen peroxide. The mechanism of catalysis on P2Mo18/OMC/GC electrode was discussed. Moreover, the development of our approach for OMC functionalization suggests the potential applications in catalysis, molecular electronics and sensors.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,