Article ID Journal Published Year Pages File Type
1171823 Analytica Chimica Acta 2006 5 Pages PDF
Abstract

Double insulating barrier tunnel emission electrodes were fabricated by adding a new pure aluminum layer upon oxidized aluminum electrodes by vacuum evaporation and thermally oxidizing the new aluminum layer in air at room temperature. Resulting Al/Al2O3/Al/Al2O3 electrodes allow the use of various aluminum alloys in the electrode body necessary for hardness or shaping ability of the electrode while obtaining the luminescence properties of pure aluminum oxide. During electrical excitation of luminescent labels by cathodic hot electron injection into aqueous electrolyte solution, the background noise is mainly based on high-field-induced solid-state electroluminescence and F-center luminescence of the outer aluminum oxide film. The more defect states and/or impurity centers the outer oxide film contains, the higher is the background emission intensity. The present electrode fabrication method provides a considerable improvement in signal-to-noise ratio for time-resolved electrochemiluminescence (TR-ECL) measurements when the original native oxide film of the electrode body contains luminescence centers displaying long-lived luminescence. The excellent performance of the present electrodes is demonstrated by extremely low-level detection of Tb(III) chelates, luminol, Pt(II) coproporphyrin and Tb(III) labels in an immunometric immunoassay by time-resolved electrochemiluminescence.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , , ,