Article ID Journal Published Year Pages File Type
1171850 Analytica Chimica Acta 2006 11 Pages PDF
Abstract

The support vector machine (SVM), recently developed from machine learning community, was used to develop a nonlinear binary classification model of skin sensitization for a diverse set of 131 organic compounds. Six descriptors were selected by stepwise forward discriminant analysis (LDA) from a diverse set of molecular descriptors calculated from molecular structures alone. These six descriptors could reflect the mechanic relevance to skin sensitization and were used as inputs of the SVM model. The nonlinear model developed from SVM algorithm outperformed LDA, which indicated that SVM model was more reliable in the recognition of skin sensitizers. The proposed method is very useful for the classification of skin sensitizers, and can also be extended in other QSAR investigation.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,