Article ID Journal Published Year Pages File Type
1172154 Analytica Chimica Acta 2006 8 Pages PDF
Abstract
This paper discusses the first analytical determination of the widely used fungicide thiabendazole by nylon-induced phosphorimetry. Nylon was investigated as a novel solid-matrix for inducing room-temperature phosphorescence of thiabendazole, which was enhanced under the effect of external heavy-atom salts. Among the investigated salts, lead(II) acetate was the most effective in yielding a high phosphorescence signal. An additional enhancement of the phosphorescence emission was attained when the measurements were carried out under a nitrogen atmosphere. There was only a moderate increase in the presence of cyclodextrins. The room-temperature phosphorescence lifetimes of the adsorbed thiabendazole were measured under different working conditions and, in all cases, two decaying components were detected. On the basis of the obtained results, a very simple and sensitive phosphorimetric method for the determination of thiabendazole was established. The analytical figures of merit obtained under the best experimental conditions were: linear calibration range from 0.031 to 0.26 μg ml−1 (the lowest value corresponds to the quantitation limit), relative standard deviation, 2.4% (n = 5) at a level of 0.096 μg ml−1, and limit of detection calculated according to 1995 IUPAC Recommendations equal to 0.010 μg ml−1 (0.03 ng/spot). The potential interference from common agrochemicals was also studied. The feasibility of determining thiabendazole in real samples was successfully evaluated through the analysis of spiked river, tap and mineral water samples.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,