Article ID Journal Published Year Pages File Type
1172416 Analytica Chimica Acta 2006 10 Pages PDF
Abstract

A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol–gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4′-bis(2,2′-diphenylviny1)-1,1′-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime τ of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of τ in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, Sg ≡ τ(0% O2)/τ(100% O2), at 23 °C, were ∼35 to ∼50 for the [Alq3 OLED[/[PtOEP dye] pair; Sg exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, SDO (defined as the ratio of τ in de-oxygenated and oxygen-saturated solutions) was ∼9.5 and ∼11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,